Mark scheme - Charge and Current

$\begin{aligned} & 1 \\ & 1 \end{aligned}$	A	1	
	Total	1	
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B	1	Examiner's Comment All questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A require careful reading and execution. Underlining or circling key information may help. Candidates are reminded not to use highlighter pens for this purpose. There is ample space for jotting down ideas and key equation, but it is best to do calculations on calculators to save time. Questions $1,3,10$ and 14 proved to be particularly straightforward, allowing most of the candidates to demonstrate their knowledge and understanding of physics. At the other end of the scale, Questions 5, 9, and 15 proved to be more challenging. - Question 5 was on the superposition of waves and the relationship intensity ∞ amplitude ${ }^{2}$. The amplitude of the resultant wave is $0.4 a$ and therefore the intensity of resultant wave must be 0.16I. The most popular distractors were \mathbf{B} and \mathbf{C}. Less than half of the candidates got the correct answer of \mathbf{A}. - Question 9 was about doubling the separation between two oppositely charged parallel plates. The only correct statement is \mathbf{D}. Electric field strength is p.d. divided by the distance between the plates. Since both quantities double, the electric field strength, must remain the same. - Question 15 was about refraction and the equation nsinn = constant at the boundary between two materials. The ratio $n 1 / n 2=\sin 80^{\circ} / \sin 90^{\circ}=0.98$; the correct is \mathbf{B}. The most popular distractor was \mathbf{C}, which was the inverse of the correct answer.
	Total	1	
3	B	1	Examiner's Comments This was a question on combining together three important expression in the topic of electricity; $V=I R, R=\rho L / A$ and $I=$ Anev. On top of this, there was the additional information that \mathbf{P} and \mathbf{Q} were in parallel and hence the potential difference across each wire was the same. The mean drift velocity v of the electrons is given by the expression $v=\frac{V}{n e \rho L} \propto \frac{1}{L}$. The cross-sectional area A, and hence the diameter d of the wire has no effect on v. The relationship correct answer is \mathbf{B}.

4.1 Charge and Current

			All the distractors were equally popular. About a third of the candidates, mostly from the very top end of the ability range, were successful in this very demanding question.
	Total	1	
1	c	1	
	Total	1	
$\begin{aligned} & 1 \\ & 5 \end{aligned}$	c	1	Examiner's Comments This was a well-answered question with most candidates correctly recalling that charge is conserved according to Kirchhoff's first law. A significant number of candidates distracted towards \mathbf{B}; perhaps because of the unit of charge is the coulomb.
	Total	1	
1	C	1	
	Total	1	
	D	20	
	Total	1	
	C	1	
	Total	1	
	D	1	
	Total	1	
2	A	1	
	Total	1	
$\begin{aligned} & 2 \\ & 1 \end{aligned}$	C	1	
	Total	1	
2	A	1	
	Total	1	
2 3	C	1	
	Total	1	

4.1 Charge and Current

2 4		D	1	
		Total	1	
2 5	a	(initial charge) $Q=E C_{0}$ or (Q conserved so final) $Q=V\left(C+C_{0}\right.$) (as capacitors are in parallel) so $E C_{0}=V\left(C+C_{0}\right)$ (and hence $V=C_{0} E /$ $\left.\left(C+C_{0}\right)\right)$	M1 A1	At least one correct expression for Q for first mark The two correct expressions equated for the second mark Examiner's Comments Some candidates obtained $Q=E C_{0}$ by applying the definition of capacitance at A, but then did not realise that charge would be conserved on switching from A to B. Some chose the wrong formula for capacitors in parallel or attempted to use the potential divider equation.
	b i	$1 / V=1 / E+C / E C_{0}$ (and compare to $y=c+$ $m x$)	B1	Mark is for rearrangement into linear equation Examiner's Comments Some candidates correctly took the reciprocal of both sides of the given equation but were then unable to show a rearrangement into the standard linear form. A common difficulty was an inability to expand the bracket in $\frac{1}{E} \times \frac{\left(C+C_{0}\right)}{C_{0}}$ to give $\frac{C}{E C_{0}}+\frac{C_{0}}{E C_{0}}$
	ii	$1 / E C_{0}=51=1 /\left(9.1 C_{0}\right)$ giving $C_{0}=1 /(51 \times$ 9.1) F $C_{0}=2.2(\mathrm{mF})$	B1 B1	$C_{0}=2.1547 \times 10^{-3} \mathrm{~F}$ Answer must be correct, rounded correctly and given in mF Candidate's answer must be given to 2 SF Examiner's Comments Some candidates gave their response to 2 d.p. instead of to 2 s.f. as required.
		(at least) one correct worst fit line drawn gradient calculated correctly using a large triangle uncertainty $=C_{0}-1 /($ wfl gradient $\times 9.1)$	B1 B1 B1 B1	Top and bottom points chosen must be from opposite extremes of uncertainty limits, accurate to within half a small square $\Delta x \geq 1.5 \times 10^{-3}$; expect 59 ± 1 or 44 ± 1 (or 0.059 or 0.044); allow ECF from poorly drawn line; readings must be accurate to within half a small square ECF from \mathbf{b} (ii); expect uncertainty of up to $0.4(\mathrm{mF})$ ECF from \mathbf{b} (ii) If no value for C_{0} given in b (ii), allow any answer given to 1 dp Examiner's Comments

4.1 Charge and Current

				Derive the S.I. base units for resistance. This exemplar illustrates a flawless answer from a top-end candidate. The equations are clear to see and follow. The units of each physical quantities are clearly identified and the appropriate S.I. units for the quantities have been successfully manipulated to give the correct answer. Compare this with the exemplar below which illustrates a common misconception. Exemplar 5 $\begin{array}{ll} \rho=\frac{m}{V} & R=\frac{\rho L}{A}=-\operatorname{tgm}^{-3}-\frac{\left(\frac{m}{V}\right) L}{A} \\ & R=\frac{\mathrm{kg}^{-3} \mathrm{~m}}{\mathrm{~m}^{2}}=\mathrm{kg} \mathrm{~m}^{-5} \mathrm{~m}=\mathrm{kg} \end{array}$ base units: This exemplar illustrates a common error made by some candidates across the ability spectrum. The resistivity ρ in the equation for resistance has been mistaken for density (which unfortunately has the same label). There can be no credit for wrong physics. It is vital to know your equations. Key:
		Total	2	
2 7	a	$\begin{aligned} & \text { current }=\frac{0.060}{2.4} \text { or current }=0.025(\mathrm{~A}) \\ & R=\frac{6.0-2.4}{0.025} \end{aligned}$	C1 C1	

4.1 Charge and Current

4.1 Charge and Current

			tension; arrow upwards in direction of string electric (force); arrow horizontally to the right (not along dotted line)		Ignore repulsion or attraction Not electric field / electric field strength / electromagnetic Examiner's Comments Most candidates scored a mark for showing the weight and tension forces accurately. Only a small proportion labelled the electric force arrow correctly and drew it as clearly perpendicular to the plates. AfL Do not use the word 'gravity' in place of 'weight'
		i	$\begin{aligned} & W x=F l \\ & 0.03 x \\ & =4.5 \times 10^{-4} \times 120 \text { or }=4.5 \times 10^{-4} \times 1.2 \\ & x=1.8 \mathrm{~cm} \text { or } x=0.018 \mathrm{~m} \end{aligned}$	M1 M1 A0	Allow any valid alternative approach e.g. M1 deflection angle $\theta=1^{\circ}$ $\mathrm{M} 1 \mathrm{x}=120 \sin \theta$ 1 mark for each side of the equation Examiner's Comments Although most candidates knew the principle of moments, many were unable to apply it correctly in this situation. More practice at this sort of question is recommended.
	b		Electric force/field (strength) increases Ball deflected further from vertical / moves to the right / touches negative plate Ball acquires the charge of the (negative) plate when it touches (Oscillates because) constantly repelled from (oppositely) charged plate	B1 B1 B1 B1	Must be clear which force is increasing Must have the idea of a repeating cycle Examiner's Comments The purpose of this question was to challenge the candidates to use their knowledge of electric fields in a novel practical situation. The word 'oscillate' confused many candidates, who tried to explain why the ball would perform simple harmonic motion.
	c		$\begin{aligned} & I=Q f \quad \text { or } \quad Q=I t \\ & f=3.2 \times 10^{-8} / 9.0 \times 10^{-9}=3.6(\mathrm{~Hz}) \end{aligned}$	C1 A1	
			Total	12	
3			electrons emitted $/ \mathrm{s}=1.0 \times 10^{-9} / 1.6 \times$ $10^{-19}=6.25 \times 10^{9}$	C1	

	C or coulomb	B1	Note 0.18 C scores two marks provided 0.09 A is seen Note 21.6 C scores one mark (for the correct unit) Examiner's Comments The majority of the candidates gained a mark for the unit of charge on this question. A common incorrect answer was 21.6 C where candidates had used the total current in the circuit rather than the current of 0.09 A in resistor Y . Some candidates did not change the time in minutes to a time in seconds.
	$(11 \times 5.4$ or $0.09 \times 5.4 \times 120)=59$ or 58 (J$)$	A1	Note 58(.3) if 10.8 C used Allow ECF from (ii) and/or (iii) Not 60 Examiner's Comments Candidates who multiplied the charge by the potential difference easily gained the mark in this question. Other candidates who used different methods often made mistakes.
	$\mathrm{I}=$ nAve or $\mathrm{v} \alpha \mathrm{I}$ larger current through \mathbf{Y} than \mathbf{Z} ORA drift velocity in \mathbf{Y} is 1.5 times drift velocity in Z ORA	B1 B1 B1	Allow any correct rearrangement of $I=n$ Ave Allow $I \mathrm{y}=0.090 \mathrm{~A}$ and $I_{z}=0.060 \mathrm{~A}$ OR $I \mathrm{y} / I z=1.5$ ORA Examiner's Comments In this question, many candidates correctly quoted the equation and stated that the mean drift velocity was directly proportional to the current. The majority of the candidates realised that there was a larger current in resistor Y than resistor Z; however, few candidates realised that the current was 1.5 times larger and therefore the mean drift velocity was 1.5 times larger.
	$n=$ number of (free) charge carriers per unit volume / per cubic metre / m^{-3} The larger the value of n, the better the conduction / greater the current ORA Copper has a larger n than carbon which has a larger n than ceramic ORA	B1 B1 B1	Allow free electrons for free charge carriers Not electrons Allow copper is a conductor / most conductive or semiconductor does not conduct as well as copper etc. Allow values for n Examiner's Comments In this question, many candidates did not score the mark for explaining that the number density was the number of free charge carriers per unit volume. Some candidates incorrectly defined it as the number of electrons as opposed to free electrons, while other candidates stated that it was per unit area. The majority of the candidates gained two marks on this question. They explained that copper was a conductor or the larger the value of the number density the better the conduction and then related the three materials correctly. A number of

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& \& \begin{tabular}{l}
candidates correctly stated example number densities. \\
Some candidates' explanations were too vague.
\end{tabular} \\
\hline \& \& Total \& 14 \& \\
\hline 3
4 \& i \& \[
\begin{aligned}
\& I=\text { nAev; } \\
\& v=60 \times 10^{-3} / 1.2 \times 10^{23} \times 1.6 \times 10^{-19} \\
\& \times 5.0 \times 0.2 \times 10^{-6} \\
\& v=3.1\left(\mathrm{~m} \mathrm{~s}^{-1}\right)
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { C1 } \\
\& \text { C1 } \\
\& \text { A1 }
\end{aligned}
\] \& allow any subject \\
\hline \& ii \& \[
\begin{aligned}
\& V=80 \times 10^{-3} \times 3.1 \times 5.0 \times 10^{-3} \\
\& =1.2 \times 10^{-3}(\mathrm{~V})
\end{aligned}
\] \& A1 \& \begin{tabular}{l}
ecf (b)(i); allow 1.2 mV ; \(1.3 \times 10^{-3}(\mathrm{~V})\) \\
Examiner's Comments \\
This exercise of choosing a formula, substituting values in correct units and evaluating was done well with about three quarters of the candidates gaining full marks.
\end{tabular} \\
\hline \& \& Total \& 4 \& \\
\hline \[
\begin{aligned}
\& 3 \\
\& 5
\end{aligned}
\] \& i \& \(2.76-2.3=0.46 \mathrm{eV}\) (so only \(0.5 \%\) of energy/AW) \& B1 \& allow \(2.8-2.3=0.5 \mathrm{eV}\) and \(3.0-2.3=0.7 \mathrm{eV}\) possible ecf from (b) \\
\hline \& ii \& \[
\begin{aligned}
\& n=2000 \times 4^{9}\left(=5.24 \times 10^{8}\right) \\
\& \mathrm{Q}=n e=8.4 \times 10^{-11}(\mathrm{C}) \\
\& I=8.4 \times 10^{-11} / 2.5 \times 10^{-9} \\
\& \text { average current }=0.034(\mathrm{~A})
\end{aligned}
\] \& C1
C1

A1 \& | allow ecf for wrong n |
| :--- |
| allow $34 \mathrm{~m}(\mathrm{~A})$; answer is $1.7 \times 10^{-5} \mathrm{~A}$ if 2000 omitted (2/3) |
| Examiner's Comments |
| Almost all of the candidates attempted this last section of the paper with some success. In part (i) most candidates showed that they understood the theory behind the question and subtracted the appropriate two numbers from part (b) to gain the mark. Part (ii) was done well with a significant number obtaining the correct answer. Another large group forgot that 2000 electrons were released and performed the calculation for only a single electron being multiplied up and so forfeited the final mark. |

\hline \& \& Total \& 4 \&

\hline \& \& \[
$$
\begin{aligned}
& Q=79 \mathrm{e} \text { and } q=2 \mathrm{e} \\
& F=\left(1 / 4 \pi \varepsilon_{0}\right) Q q / r^{2} \\
& =79 \times 2 \times\left(1.6 \times 10^{-19}\right)^{2} /\left[4 \pi \times 8.85 \times 10^{-12}\right. \\
& \left.\times\left(6.8 \times 10^{-14}\right)^{2}\right] \\
& =7.9(\mathrm{~N})
\end{aligned}
$$

\] \& | C1 |
| :--- |
| C1 |
| C1 |
| A1 | \& | Apply ECF for wrong charge(s), e.g. Q and / or $\mathrm{q}=\mathrm{e}$, or $\mathrm{Q}=$ 79 and / or $q=2$, etc |
| :--- |
| Examiner's Comments |
| The most common error here was to use incorrect values for the charges on the two ions. Even so, most candidates were able to gain most of the marks with ECF. |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& Total \& 4 \& \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
\& 3 \\
\& 7
\end{aligned}
\]} \& i \& \(\mathrm{I}=\mathrm{Q} / \mathrm{t}=650 / 5=130 \mathrm{~A}\) \& A1 \& \\
\hline \& ii \& \(\mathrm{n}=\mathrm{I} / \mathrm{e}=130 / 1.6 \times 10^{-19}=8.13 \times 10^{20}\) \& A1 \& ecf(b)(i) \\
\hline \& \[
\begin{aligned}
\& \mathrm{ii} \\
\& \mathrm{i} \\
\& \mathrm{ii} \\
\& \mathrm{i}
\end{aligned}
\] \& \[
\begin{aligned}
\& I=10^{29} \mathrm{Aev} \text { giving } 8.13 \times 10^{20}=10^{29} \mathrm{Av} \\
\& v=8.13 \times 10^{20} / 10^{29} \times 3.0 \times 10^{-4}=2.7 \times \\
\& 10^{-5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) .
\end{aligned}
\] \& C1
A1 \& ecf(b)(ii) \\
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
\& 3 \\
\& 8
\end{aligned}
\]} \& \& Total \& 4 \& \\
\hline \& i \& \[
\begin{aligned}
\& \text { current }=0.030(\mathrm{~A}) \\
\& (I=\text { Anev }) ; 0.030=3.8 \times 10^{-6} \times 5.0 \times 10^{25} \\
\& \times 1.6 \times 10^{-19} \times v \\
\& v=9.9 \times 10^{-4}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)
\end{aligned}
\] \& C1 \& \begin{tabular}{l}
Examiner's Comments \\
Almost all candidates were familiar with the equation \(I=\) Anev. The modal score here was two marks. Most scripts had wellstructured answers. The final answer was often quoted to the correct number of significant figures and written in standard form. A very small number of candidates incorrectly calculated the current using 'current \(=V R=3.0 \times 100=300 \mathrm{~A}\) '; this scored zero because of incorrect physics.
\end{tabular} \\
\hline \& ii \& \begin{tabular}{l}
The resistance (of the thermistor or circuit) decreases \\
Current / / / ammeter reading increases because \(/ \propto 1 / R\) or number density (of charge carriers) increases \\
Voltmeter reading does not change (because there is no internal resistance)
\end{tabular} \& B1
B1

B1 \& | Allow $V=I R$ (any subject) and |
| :--- |
| $V=$ constant |
| Allow 'more electrons / more charge carriers' |
| Allow voltmeter reading stays 3.0 (V) |
| Examiner's Comments |
| This question on the heating of a thermistor favoured the topend candidates. Most candidates recognised that the resistance of the NTC thermistor decreased as its temperature was increased. The explanation of why the current increased lacked robustness. Some correctly gave the explanation as 'increased number density of free electrons' or successfully showed that current was inversely proportional to the resistance. The fate of the voltmeter reading baffled many candidates. The answer was simple, the voltmeter reading remained unchanged because the battery had no internal resistance. For many, the voltmeter reading increased because 'p.d. was proportional to the current'. |

\hline \& \& Total \& 5 \&

\hline
\end{tabular}

4.1 Charge and Current

4 1	a	$\begin{aligned} & E=y \text {-intercept } \\ & r=- \text { gradient } \end{aligned}$	B1 B1	E must be the subject R must be the subject Do not accept gradient $=-r$
	b	$\left(R=\frac{5.68}{0.025}=\right) 230 \Omega$	A1	Allow 227
		$\begin{aligned} & \left(\frac{5.68^{2}}{(c)(i)} \text { or } 0.025^{2} \times(\mathrm{c})(\mathrm{i}) \text { or } 0.025 \times 5.68=\right) 0.14 \\ & 0.14 \times 300=42(\mathrm{~J}) \end{aligned}$	C1 A1	Allow ECF from (c) (i) $0.140 \text { or } 0.142 \text { or } 0.144$ Allow 43 (J) (for 0.142 or 0.144)
		$\begin{array}{l\|l} \text { ii } & \left(Q=\frac{(c)(\text { (ii) }}{5.68} \text { or } 0.025 \times 300=\right) 7.4 \text { or } 7.5 \\ \text { i } & \text { C } \end{array}$	B1 B1	Allow ECF from (c) (ii)
		Total	7	
4 2		$\begin{aligned} & R=\frac{150}{1.5^{2}} \\ & 67 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow $V=\frac{150}{1.5}=100 \mathrm{~V} \quad$ and $R=\frac{100}{1.5}$
		$Q=1.5 \times 5.0 \times 60 \times 60$ or 27000 $N=\frac{1.5 \times 5.0 \times 60 \times 60}{1.6 \times 10^{-19}}=1.7 \times 10^{23}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note use of $150(W)$ does not score 1.7×10^{25} 1.68×10^{23} 4.7×10^{19} scores one mark Not 1.7×10^{25} (uses 150 W)
		$\begin{aligned} & v=\frac{1.5}{7.9 \times 10^{28} \times 4.1 \times 10^{-9} \times 1.6 \times 10^{-19}} \\ & 0.029\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 A1	
		Total	6	
		Level 3 (5-6 marks) Clear expansion of three statements There is a well-developed line of reasoning which is clear and logically structured. The information presented is clear, relevant and substantiated. Level 2 (3-4 marks) Clear expansion of two statements or Limited attempt at all three There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1-2 marks) Limited attempt at one or two statements	$\begin{gathered} \mathrm{B} 1 \mathrm{x} \\ 6 \end{gathered}$	Use level of response annotations in RM Assessor, e.g. L2 for 4 marks, L2^ for 3 marks, etc. Indicative scientific points may include: statement 1 - fusion reactions are occurring - which change H into He - and mass is lost which releases energy - energy released $=c^{2} \Delta m$ - Δm per second $=$ luminosity $/ c^{2}$ statement 2 - average k.e. of each proton is ${ }^{\frac{3}{2} k T}$ - high T means protons are travelling at high speed - so fast enough to overcome repulsive forces - and get close enough to fuse - p.e. $=\mathrm{e}^{2} / 4 \pi \varepsilon$ or so T must be high enough for ${ }_{2}^{3} k T>\mathrm{e}^{2 / 4} / 4 \varepsilon_{0} r$

		There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.		- r is approximately 3 fm statement 3 - k.e. $\propto T$ so average energy at $10^{7} \mathrm{~K}$ is only one thousandth of the average energy at $10^{10} \mathrm{~K}$ when protons might fuse - but M-B distribution applies so at the high energy end there will be a few p with enough energy - quantum tunnelling across potential barrier is possible - small probability of many favourable collisions to boost energy of p - 4 p must fuse to produce He ; it is complicated process making probability of fusion much less - number of p in Sun is so huge that, even with such a small probability, $4 \times 10^{9} \mathrm{~kg}$ of p still interact s^{-1} - a larger probability means lifetime of the Sun would be shorter Examiner's Comments This was one of the two LoR questions. It required understanding of fusion, mass-energy equivalence, the Maxwell-Boltzmann distribution, and the relationship between mean kinetic energy and temperature for particles in an ideal gas. Responses to the following questions were being sought: 1. Why is the Sun losing mass? 2. Why is an extremely high temperature needed for fusion in stars? Why does fusion occur in the Sun even though its 3. temperature is 1,000 times less than that required by theory? Two dissimilar responses could score comparable marks if the criteria set out in the answer section of the marking scheme were met. Level 3 responses gave a clear answer to all three of the questions, whereas Level 2 responses generally had clear answers to only two. In Level 1, limited answers to only one or two of the above questions were given.
		Total	6	
4		$\begin{aligned} & 12000=\frac{Q}{4 \pi \varepsilon_{0} r} \\ & 12000=\frac{Q}{4 \pi \varepsilon_{0} \times 0.19} \\ & Q=2.5(4) \times 10^{-7} \text { (C) } \end{aligned}$	C1 C1 A0	Allow $E=(V / d=) 6.316 \times 10^{4}$ and $E=6.316 \times 10^{4}=\frac{Q}{4 \pi \varepsilon_{0} \times 0.19^{2}}$
	ii		C1 C1 A0	There is no ECF from (b)(i)

		$\begin{aligned} & t=78 \times 3600 \\ & \mathbf{1} \begin{array}{l} (I=) \frac{2.5 \times 10^{-7}}{78 \times 3600} \\ I=8.9 \times 10^{-13}(\mathrm{~A}) \end{array} \\ & (R=) \frac{6000}{9.0 \times 10^{-13}} \text { or } 6.7 \times 10^{15}(\Omega) \text { or } V=I R \\ & \text { and } R=\frac{\rho L}{A} \end{aligned} \begin{aligned} & \frac{6000}{9.0 \times 10^{-13}}=\frac{\rho \times 0.38}{1.1 \times 10^{-4}} \\ & \rho=1.9 \times 10^{12}(\Omega \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note 2.54×10^{-7} gives an answer $9.0 \times 10^{-13} \mathrm{~A}$ There is no ECF from (b)(ii)1 Take 12000 V as TE for this C1 mark, then ECF Note $8.9 \times 10^{-13}(\mathrm{~A})$ gives an answer $2.0 \times 10^{12}(\Omega \mathrm{~m})$
		Total	7	
	i	Arrow in anticlockwise direction	B1	Allow this mark for correct direction shown on diagram either on or off connecting wires Examiner's Comments This question required the candidates to appreciate that the sum of the emfs will lead to an anticlockwise conventional current. This question was answered well by the majority of candidates, however a number put two directions on, one from each cell. Misconception The unusual setting out of the circuit meant that some candidates were unsure whether parts of the circuit were in series or parallel. This could have been overcome by following the circuit or even by redrawing it.
	ii	$\begin{aligned} & (E=) 4.5-2.4 \text { or }\left(R_{T}=\right) 0.80+0.50+1.2 \\ & 4.5-2.4=I \times(0.80+0.50+1.2) \\ & I=0.84(\mathrm{~A}) \end{aligned}$	C1 C1 A1	$E=2.1(\mathrm{~V}) ; \mathrm{R}_{\mathrm{T}}=2.5(\Omega)$ Treat missing 1.2 resistance as TE Allow 2 marks for $2.8(\mathrm{~A})$; $\mathrm{E}=6.9 \mathrm{~V}$ used Examiner's Comments This calculation required the candidate to set out the whole circuit in one. Around one third did not score any marks on this question as they attempted to treat each cell individually and then produce some form of average. Other common misunderstandings included treating the 0.5 ohm and 0.8 ohm resistors as if they were in parallel, and adding the emfs.
		$(I=A n e v)$ $\begin{aligned} & 0.84=\pi \times\left(2.3 \times 10^{-4}\right)^{2} \times 4.2 \times 10^{28} \times 1.60 \times \\ & 10^{-19} \times v \\ & v=7.5 \times 10^{-4}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 A1	Possible ECF from (ii) Note answer is $2.5 \times 10^{-3}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ for $I=2.76(\mathrm{~A})$ Allow 1 mark for 1.9×10^{-4}; diameter used as radius Examiner's Comments This question was well done by a large number of candidates,

4.1 Charge and Current

| | | | many of whom scored full marks by correctly following through
 with their value of current from the previous part. Few
 candidates used the diameter instead of the radius when
 determining the cross sectional area, and for the most part the
 setting out of the calculation meant that credit could be given
 even if arithmetic errors occurred later. |
| :--- | :--- | :--- | :--- | :--- |
| | | | Allow keep the surroundings cold
 Allow to keep the temperature / resistance constant OR allow
 increase in temperature increases resistance |
| Examiner's Comments | | | |

	ii	ratio $=12$	A1	
		Total	9	
4 7	i	$(R=) \frac{6.0}{0.150}$ $R=40 \Omega$	M1	Allow any correct value of $V(\pm 0.1 \mathrm{~V})$ divided by the correct value of $I(\pm 10 \mathrm{~mA})$ from the straight line for \mathbf{R} Examiner's Comments The majority of the candidates scored 1 mark here for clearly using the graph to show the resistance of \mathbf{R} to be 40Ω. Most used a data point from the straight line. A significant number also used the idea that the gradient of the straight line is equal to the inverse of the resistance. However, candidates are reminded that resistance is equal potential difference divided by current, but in this context of a straight line through the origin, determining resistance from the gradient was allowed. Of course, determining the gradient of a curve is simply incorrect physics for determining resistance.
	ii	$\begin{aligned} & (V \mathrm{~L}=) 1.4(\mathrm{~V}) \text { or }\left(V_{\mathrm{R}}=\right) 4.0(\mathrm{~V}) \text { or }\left(R_{\mathrm{T}}=\right) \\ & 6.0 / 0.1(\Omega) \\ & \left(V_{\text {terminal }}=\right) 5.4(\mathrm{~V}) \text { or }\left(V_{\mathrm{r}}=\right) 0.6(\mathrm{~V}) \text { or }(r=) 60 \\ & -54(\Omega) \\ & r=6.0(\Omega) \end{aligned}$	C1	Allow full credit for other correct methods Possible ECF from (i) Allow $\pm 0.1 \mathrm{~V}$ for the value of $p . d$. from the graph Note getting to this stage will also secure the first C1 mark Allow 1 SF answer here without any SF penalt Examiner's Comments This was a discriminating question with many of the top-end candidates effortless getting the correct answer of 6.0Ω for the internal resistance r. The most common error was omitting the resistance of the filament lamp in the calculation. This gave an incorrect value of 20Ω for the internal resistance. Candidates doing this still managed to pick up 1 mark for the total resistance of 60Ω.
		$\rho=\frac{40 \times 2.4 \times 10^{-6}}{8.0 \times 10^{-3}}$ (Any subject) $\rho=0.012(\Omega \mathrm{~m})$	C1	Allow ECF Allow 1 mark for either 0.018 for using $60 \Omega, 0.016(2)$ for using 54Ω or for 0.0018 for 6.0Ω Examiner's Comments The success in this question depended on understanding the term n in the equation $I=$ Anev given in the Data, Formulae and Relationship booklet. A significant number of candidates took n to be the total number of charge carriers within the volume of \mathbf{R}, instead of the number of charge carriers per unit volume (number density). Those who appreciated this had no problems

				coping with prefixes and powers of ten. The correct answer was $7.7 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1}$. Using 6.5×10^{17} for the number density, gave an answer of 4.0 $\times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$; examiners credited 1 mark for this incorrect answer, mainly for the manipulating and using the equation $I=$ Anev. Exemplar 6 $\begin{aligned} & 1=\text { Anev } \quad V=\frac{0.1}{2.4 \times 10^{-6} \times \frac{1}{2.5 \times 110^{-6} \times 8 \times 10^{-3}}} \times 1.6 \times 10^{19} \\ & \text { Ane } \\ & \end{aligned}$ This exemplar illustrates a perfect answer from a C-grade candidate. The equation has been rearranged correctly and the substitution is all correct and easy to follow. The number density n has not been calculated separately - it forms an integral part of the whole calculation. The one big benefit of this is that you do not end up with rounding errors. A decent technique demonstrated here. All correct for 3 marks.
	$\|v\|$	$n=\frac{6.5 \times 10^{17}}{2.4 \times 10^{-6} \times 0.008} \quad \text { or }$ $n=3.385 \times 10^{25}\left(\mathrm{~m}^{-3}\right)$ $v=\frac{0.100}{2.4 \times 10^{-6} \times 3.385 \times 10^{25} \times 1.60 \times 10^{-19}}$ (Any subject) $v=7.7 \times 10^{-3}\left(\mathrm{~m} \mathrm{~s}^{-3}\right)$	C1 C1 A1	Note do not penalise again for the same POT error Allow 1 mark for $4(.0) \times 10^{5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) ; n=6.5 \times 10^{17}$ used
		Total	9	

